Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofilm ; 5: 100102, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36660363

RESUMO

Biofilms are self-organized communities of microorganisms that are encased in an extracellular polymeric matrix and often found attached to surfaces. Biofilms are widely present on Earth, often found in diverse and sometimes extreme environments. These microbial communities have been described as recalcitrant or protective when facing adversity and environmental exposures. On the International Space Station, biofilms were found in human-inhabited environments on a multitude of hardware surfaces. Moreover, studies have identified phenotypic and genetic changes in the microorganisms under microgravity conditions including changes in microbe surface colonization and pathogenicity traits. Lack of consistent research in microgravity-grown biofilms can lead to deficient understanding of altered microbial behavior in space. This could subsequently create problems in engineered systems or negatively impact human health on crewed spaceflights. It is especially relevant to long-term and remote space missions that will lack resupply and service. Conversely, biofilms are also known to benefit plant growth and are essential for human health (i.e., gut microbiome). Eventually, biofilms may be used to supply metabolic pathways that produce organic and inorganic components useful to sustaining life on celestial bodies beyond Earth. This article will explore what is currently known about biofilms in space and will identify gaps in the aerospace industry's knowledge that should be filled in order to mitigate or to leverage biofilms to the advantage of spaceflight.

2.
mBio ; 10(4)2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409682

RESUMO

Opportunistic pathogens establishing new infections experience strong selection to adapt, often favoring mutants that persist. Capturing this initial dynamic is critical for identifying the first adaptations that drive pathogenesis. Here we used a porcine full-thickness burn wound model of chronic infection to study the evolutionary dynamics of diverse Pseudomonas aeruginosa infections. Wounds were infected with a mixed community of six P. aeruginosa strains, including the model PA14 strain (PA14-1), and biopsies taken at 3, 14, and 28 days postinfection. Hyperbiofilm-forming rugose small-colony variants (RSCVs) were the earliest and predominant phenotypic variant. These variants were detected on day 3 and persisted, with the majority evolved from PA14-1. Whole-genome sequencing of PA14-1 RSCV isolates revealed driver mutations exclusively in the wsp pathway, conferring hyperbiofilm phenotypes. Several of the wsp mutant RSCVs also acquired CRISPR-Cas adaptive immunity to prophages isolated from the P. aeruginosa wound isolate (B23-2) that was also present in the inoculum. These observations emphasize the importance of interstrain dynamics and the role of lysogenic phages in the survival of an invading pathogen. Rather than being a side effect of chronicity, the rapid rise of RSCVs in wounds is evidence of positive selection on the Wsp chemosensory system to produce mutants with elevated biofilm formation capacity. We predict that RSCVs provide a level of phenotypic diversity to the infecting bacterial community and are common, early adaptations during infections. This would likely have significant consequences for clinical outcomes.IMPORTANCE Bacteria adapt to infections by evolving variants that are more fit and persistent. These recalcitrant variants are typically observed in chronic infections. However, it is unclear when and why these variants evolve. To address these questions, we used a porcine chronic wound model to study the evolutionary dynamics of Pseudomonas aeruginosa in a mixed-strain infection. We isolated hyperbiofilm variants that persisted early in the infection. Interstrain interactions were also observed, where adapted variants acquired CRISPR-mediated immunity to phages. We show that when initiating infection, P. aeruginosa experiences strong positive selection for hyperbiofilm phenotypes produced by mutants of a single chemosensory system, the Wsp pathway. We predict that hyperbiofilm variants are early adaptations to infection and that interstrain interactions may influence bacterial burden and infection outcomes.


Assuntos
Biofilmes/crescimento & desenvolvimento , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Infecção dos Ferimentos/microbiologia , Animais , Proteínas de Bactérias/genética , Bacteriófagos/genética , Evolução Biológica , Proteínas Associadas a CRISPR/genética , GMP Cíclico/metabolismo , Aptidão Genética , Genoma Bacteriano/genética , Mutação , Fenótipo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/isolamento & purificação , Suínos , Infecção dos Ferimentos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...